
Spectral Analysis

A signal x may be represented as a function of time as x(t) or as a function
of frequency X(f). This is due to relationships developed by a French math-
ematician, physicist, and Egyptologist, Joseph Fourier(1768-1830). Both the
Fourier transform and the closely associated Fourier series are named in his
honor. Even the telegraph hadn’t been invented in his lifetime and were he
alive today he would be astonished at the number of algorithms, software, and
electronic test instruments that bear his name. The fact that he lived to ac-
complish the foundation of spectral analysis is miraculous since he was the last
of eighteen children and escaped the guillotine several times during the French
Revolution.

Joseph Fourier

The two representations of a signal are connected via the Fourier transform

X(f) = z{x(t)} =
Z ∞
−∞

x(t) exp(−j2πft)dt

Many of the signals of interest in electrical engineering are periodic functions of
time. A periodic function is one for which

x(t) = x(t± nT )
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where n is any integer and T is the smallest interval of time for which this
relationship is true. The interval T is called the period of the periodic function.
If the periodic function satisfies constraints known as the Dirichlet conditions
(which are satisfied by any function produced by nature) it may be expanded
in a Fourier series

x(t) =
∞X

n=−∞
cn exp(jnωpt)

where ωp = 2πfp and fp = 1/T is the frequency in Hertz of the periodic function.
This is known as the complex Fourier series representation of a periodic function.
The expansion coefficient cn are complex constants which can be determined
from x(t) as

cn =
1

T

Z α+T

α

x(t) exp(−jnωpt)dt

where α is any real number. The terms in the Fourier series for which n is an
even integer are known as the even harmonics and the terms for which n is an
odd integer are known as odd harmonics. The term for which n = ±1 are known
as the fundamental. Alternative representation of the Fourier series is the real
trigonometric series

x(t) = ao/2 +
∞X
n=1

[an cos(nωpt) + bn sin(nωpt)]

where

an =
2

T

Z α+T

α

x(t) cos(nωpt)dt bn =
2

T

Z α+T

α

x(t) sin(nωpt)dt

These are not different series; just two ways of expressing the same result. The
expansion coefficients are related by

cn =
an − jbn

2
an = 2Re(cn) bn = −2 Im(cn)

The Fourier transform of a periodic function is then given by

X(f) = z{x(t)} =
Z ∞
−∞

x(t) exp(−j2πft)dt =

Z ∞
−∞

∞X
n=−∞

cn exp(jnωpt) exp(−j2πft)dt =
∞X

n=−∞
cnδ(f − nfp)

which is a line spectra. The function δ is the Dirac delta which makes the
spectra zero everywhere excepts at frequencies which are integral multiples of
fp. The lines have amplitudes or weights of cn. If a plot is made of the magnitude
of the spectra for only positive frequencies it would consists of lines at f = nfp
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and the height of each line would be 2 |cn| If the spectra is to be plotted in rms
each line would be

√
2 |cn| .

A topic tangential to Fourier or Spectral analysis is Total Harmonic Distor-
tion (THD) which measures how much a signal differs from a perfect sine wave.
It is defined as (in percent) as

THD = 100

vuut ∞X
n=2

¯̄̄̄
cn
c1

¯̄̄̄2

Sine Wave

A sine wave with amplitude A and frequency fp = 1/T is given by

x(t) = A sin(ωpt)
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Sine Wave

is particularly simple since

sin θ =
exp(jθ)− exp(−jθ)

2j

so

cn =

⎧⎨⎩
1
2j n = 1

− 1
2j n = −1

0 n 6= ±1
and the spectra is given by
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Spectra of Sine Wave.

where the frequencies and amplitudes have been normalized to unity for sim-
plicity. So the Fourier series representation of a perfect sine wave is a perfect
sine wave. Which makes the THD = 0 which means that there is no harmonic
distortion or, another way of putting it, nothing looks like a sine wave more
than a sine wave.

Square Wave

A symmetric square wave with a dc level of zero is one which is +A half
the time and −A the other half. The choice of the time origin is arbitrary by a
common one is

x(t) =

⎧⎨⎩ −A −T/2 < t < 0
+A 0 < t < T/2
x(t± nT ) elsewhere
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Symmetric Square Wave.

where A = 1 and T = 1 in the figure. The complex Fourier expansion coefficients
are

cn =
4
π
1
n n odd

0 n even
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Spectra of Symmetric Square Wave

The normalized spectra is

cn
c1
=

1
n n odd
0 n even

As a comparison of how well the Fourier series represents a square wave a plot
can be made of the square wave and the first five harmonics

x(t) = ao/2 +
5X

n=1

[an cos(nωpt) + bn sin(nωpt)]
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Square Wave and Fourier Approximation using First 5 Terms.

The ringing that occurs where the square wave is switching levels is known as
the Gibbs phenomenon. Using the first 9 components the THD for the square
wave is 42.879% which simply means a square wave doesn’t look very much like
a sine wave.

Triangular Wave

A symmetric triangular wave consists of alternating straight lines with slopes
of equal magnitudes and a dc level of zero.

x(t) =

⎧⎪⎪⎨⎪⎪⎩
4A t

T 0 ≤ t ≤ T/4
−4A t

T + 2A T/4 ≤ t ≤ 3T/4
4A t

T − 4A 3T/4 ≤ t ≤ T
x(t± nT )

where A is the amplitude and T the period of the triangular wave.
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Symmetric Triangular Wave.

The complex Fourier expansion coefficients are

cn = −jA
4 sin nπ

2

π2n2

which are zero for n even and roll off as 1/n2 for n odd.
The spectra for the triangular wave is
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Spectra for Symmetric Triangular Wave.

A plot of the triangular wave and the first 3 components shows they are almost
indistinguishable
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Triangular Wave and Approximation by First 3 Components.

The THD is only 12.048% which means that a triangular wave is reasonable
close to a sine wave.

Ramp

A ramp or sawtooth wave is one for which

x(t) =

⎧⎨⎩ 2A t
T −T

2 < t ≤ T
2

x(t± nT ) n any integer
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Ramp Wave.

The expansion coefficients are

cn = jA
cos(nπ)

nπ
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The spectra is given by
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Spectra of Ramp.

Using the first 3 components the approximation and the ramp are
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Ramp and Approximation.

The THD using the first 9 components is 75.469%.

Rectangular Pulse Train

A rectangular pulse train is similar to a square wave in that it switches be-
tween two levels but the duty cycle is not 50%. The duty cycle is the percentage
of the time the waveform is in the high state. The pulse train is

x(t) =

⎧⎨⎩
A |t| ≤ τ

2

0 τ
2 < t < T

x(t± nT ) n any integer

so the duty cycle is d = τ/T.

9



1− 0 1
0.5−

0

0.5

1

1.5

p t( )

t

Pulse Train with Duty Cycle 0.15.

The Fourier expansion coefficients are

cn = Ad
sin(πnd)

πnd

with spectra
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Spectra of Pulse Train

which is, of course, a line spectra but the envelope of the spectra has a sin(x)/x
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behavior.
The approximation of the pulse train as the first 20 terms of the Fourier

series is
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Approximation of pulse train as first 20 Terms of Fourier Series.

for which the THD is 139 which means this really doesn’t look like a sine wave.
If the duty cycle d = 0.5 this becomes a symmetric square wave.

RF Pulse Train

A rf pulse train is a rectangular pulse train multiplied to a sinusoidal with
a frequency much higher than that of the train. Mathematically it is given by

x(t) =

⎧⎨⎩ A cos(ωct) |t| ≤ τ
2

x(t± nT ) n is an integer

The duration of the pulse is τ . It is assumed that fc is an integral multiple of
1/T. The number of cycles in the pulse N = τfc which is assumed to be an
integer. This is the sort of signal used in radar.
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RF Pulse Train.

The Fourier expansion coefficients are given by

cn =
1

T

Z T
2

−T
2

x(t) exp(j2πfpnt)dt =
1

T

Z τ
2

− τ
2

A cos(2πfct) exp(j2πfpnt)dt =

1

T

Z τ
2

− τ
2

A cos(2πfct) cos(2πfpnt)dt =

1

T

Z τ
2

− τ
2

A cos(2πfct) cos(2πfpnt)dt =
Aτ

2T

∙
sinπ(fc − nfp)

π(fc − nfp)
+
sinπ(fc + nfp)

π(fc + nfp)

¸
which shows that the spectra of the rf pulse train is just that of the rectangular
pulse train shifted up to f = fc and down to f = −fc, The spectra is
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RF Pulse Train Spectra.

The distance fc to the first null is τ/2 where τ = N/fc where N is the number
of cycles in the rf pulse. So the spectra of all of these signals is a line spectra
which is a direct consequence of their periodicity. However, the value of the
expansion coefficients is a function of the shape. The envelope of the spectra
has the typical sin(u)/u shape.
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Spectra of RF Pulse Centered about High Frequency Carrier.

The spectra has nulls centered about the carrier at frequencies

f1 = fc − 1/τ f2 = fc + 1/τ

so the difference between the first two nulls about the center of the sin(u)/u is
given by

∆f = 2/τ = 2fc/N

where N is the number of cycles in the rf pulse.
The spectra of a signal is important for a number of reasons. Most im-

portantly it determines the bandwidth that would have to be used to pass or
transmit the signal without distortion. It is fundamental in signal processing
and telecommunications.
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