1. What is the current $i(t)$ in the circuit shown below when $t = 3\, \text{ms}$? The source is $e(t) = 10\, \text{V}u(t)$ where $u(t)$ is the unit step function. The component values are: $R_1 = 6.8\, \text{k}\Omega$, $R_2 = 2.4\, \text{k}\Omega$, $R_3 = 5.1\, \text{k}\Omega$, and $C = 0.22\, \mu\text{F}$.

\[
V_c(t) = E \left[1 - e^{-\frac{t}{\tau}}\right] u(t) + V_c(0^-) e^{-\frac{t}{\tau}} u(t)
\]

\[
i_c(t) = \frac{E}{R} e^{-\frac{t}{\tau}} u(t)
\]

$\tau = RC$

$E_0 = 10\, \text{V}$

\[
E = E_0 \frac{R_2}{R_2 + R_3} = 3.2\, \text{V}
\]

$R = R_1 + R_2 || R_3 = 8.432\, \text{k}\Omega$

$\tau = RC = 1.855\, \text{ms}$

$t = 3\, \text{ms}$

\[
V_c = E \left[1 - e^{-\frac{t}{\tau}}\right] = 2.565\, \text{V}
\]

\[
i_c = \frac{E}{R} e^{-\frac{t}{\tau}} = 0.075\, \text{mA}
\]

\[
V_2 = V_c + R_1 i_c = 3.077\, \text{V}
\]

\[
i_2 = \frac{V_2}{R_2} = 1.282\, \text{mA}
\]

\[
i = i_2 + i_c = 1.357\, \text{mA}
\]

\[
i(t) = 1.36\, \text{mA}
\]
2. The excitation, $i_o(t)$, in the circuit shown below is $i_o(t) = 10 \text{mA}u(t)$. Determine the current $i(t)$ when $t = 0.1 \mu s$. The component values are: $R_1 = 20 \Omega$, $R_2 = 33 \Omega$, $R_3 = 15 \Omega$, $R_4 = 11 \Omega$, and $L = 3 \text{mH}$.

\[
\begin{align*}
E &= I_o \frac{R_4}{R_2 + R_3 + R_4} \quad R_2 = 61.525 \text{V} \\
R &= R_1 + R_2 \left(\frac{1}{R_3 + R_4} \right) = 34.542 \Omega \\
G &= \frac{1}{R} = 28.95 \mu \Omega \\
I &= \frac{E}{R} = 1.781 \text{mA} \\
\gamma &= GL = 0.0087 \mu \text{s} \\
i_L &= I \left[1 - e^{-\frac{t}{\gamma}} \right] = 1.218 \text{mA} \\
v_L &= \frac{I}{G} e^{-\frac{t}{\gamma}} = 19.454 \text{V} \\
v_2 &= v_L + R_1 i_L = 43.813 \text{V} \\
i_2 &= \frac{v_2}{R_2} = 1.328 \text{mA} \\
i &= -[i_L + i_2] = -2.546 \text{mA} \\
i(t) &= -2.55 \text{mA} \quad 10 \\
\end{align*}
\]
3. Determine the complex transfer function $\tilde{T}(s)$ for the circuit shown below. Specify it as a function of the complex frequency, s, and the symbols for the resistors and capacitor and as a the ratio of two polynomials in s. Plot the magnitude of the complex transfer function $|\tilde{T}(j\omega)|$ in decibels as a function of the frequency ω of the source as ω varies from 1 Hz to 1 MHz. The component values are $R_1 = 2\,k\Omega$, $R_2 = 470\,k\Omega$, $R_3 = 1\,k\Omega$, $R_4 = 1\,k\Omega$, and $C = 10\,nF$. Use the numerical values given for the resistors and capacitors. If applicable, determine the pole and zero frequencies as well as the high and low frequency gains.

\[
T(0) = \frac{R_3}{R_1 + R_2 + R_3} = K_T
\]

\[
T(\infty) = \frac{R_3}{R_1 + R_3} = K_H
\]

\[
\therefore \text{helenu}
\]

\[
\tilde{T}(s) = \frac{1}{s} \frac{1 + \frac{R_2}{R_1 + R_2 + R_3}}{1 + \frac{1}{(R_4 + R_2)(R_1 + R_3)}}
\]

\[
|\tilde{T}(0)|_{dB} = 20 \log_{10} \left| \frac{R_3}{R_1 + R_2 + R_3} \right| = -53.497 \text{ dB}
\]

\[
|\tilde{T}(\infty)|_{dB} = 20 \log_{10} \left| \frac{R_3}{R_1 + R_3} \right| = -12.037 \text{ dB}
\]

\[
f_p = \frac{1}{2\pi \tau_p} = 3.998 \text{ Hz}
\]

\[
f_z = \frac{1}{2\pi \tau_z} = 33.791 \text{ Hz}
\]
4. Indicate with an F (floating) or G (grounded) whether the following laboratory instruments input or output connectors are floating or grounded with respect to the ac power line ground

- F Keysight 34401A Digital Multimeter
- G Keysight DSO-X 3012A Oscilloscope
- F Keysight 3630A Triple Output dc Power Supply
- F Keysight 33522A Function Generator/Arbitrary Waveform Generator
- F Fluke/Philips 6303 LCR Meter

The names of the three wires connected to a standard 120 Volt AC outlet are the ________ wire which is covered with ________ colored insulation, the ________ wire which is covered with ________ colored insulation, and the ________ which is covered with ________ colored insulation.

2 each

3 try
1. What is the current \(i(t) \) in the circuit shown below when \(t = 7.3 \text{ ms} \)? The source is \(i_o(t) = 10 \text{ mA}u(t) \) where \(u(t) \) is the unit step function. The component values are: \(R_1 = 12 \text{ k}\Omega, \ R_2 = 30 \text{ k}\Omega, \ R_3 = 7.5 \text{ k}\Omega, \ R_4 = 24 \text{ k}\Omega, \) and \(C = 0.22 \mu\text{F} \).

\[
V_c(t) = E\left[1 - e^{-\frac{t}{\tau}}\right]u(t) \\
I_o(t) = 10 \text{ mA} \\
i_o(t) = I_o u(t)
\]

\[
\tau = RC = 6.02 \text{ ms} \\
t = 7.3 \text{ ms}
\]

\[
E = I_o \frac{R_y}{R_2 + R_3 + R_4} \\
R = R_1 + \frac{R_2}{R_3 + R_4} = 27.366 \text{ k}\Omega \\
\tau = RC = 6.02 \text{ ms} \\
V_c = E\left[1 - e^{-\frac{t}{\tau}}\right] = 82.25 \text{ V} \\
i_c = \frac{E}{R} e^{-\frac{t}{\tau}} = 1.272 \text{ mA}
\]

\[
v_2 = V_c + R_1 i_c = 97.52 \text{ V} \\
v_2 = \frac{V_2}{R_2} = 3.281 \text{ mA}
\]

\[
i = -\left[i_2 + i_c\right] = -4.523 \text{ mA}
\]

\[
i(t) = -4.52 \text{ mA}
\]
2. The excitation, \(e(t) \), in the circuit shown below is \(e(t) = 18 \ u(t) \) V. Determine the current \(i(t) \) when \(t = 0.3 \mu s \). The component values are: \(R_1 = 11 \) k\(\Omega \), \(R_2 = 33 \) k\(\Omega \), \(R_3 = 30 \) k\(\Omega \), and \(L = 5 \) mH.

\[
\dot{L}_L(t) = I \left[1 - e^{-\frac{t}{\tau}} \right] u(t) + V_L
\]

\[
V_L(t) = \frac{I}{G} e^{-\frac{t}{\tau}} u(t)
\]

\[\tau = RC\]

\[E = \frac{E_0 \frac{R_2}{R_2 + R_3}}{R_1 + R_2 || R_3} = 9.429 \text{ V}\]

\[R = R_1 + R_2 || R_3 = 26.714 R\]

\[I = \frac{E}{R} = 0.353 \text{ mA}\]

\[G = \frac{1}{R} = 37.43 \mu \text{S}\]

\[\tau = GR = 0.187 \mu \text{s}\]

\[I_L = I \left[1 - e^{-\frac{t}{\tau}} \right] = 0.282 \text{ mA}\]

\[V_L = \frac{I}{G} e^{-\frac{t}{\tau}} = 1.898 \text{ V}\]

\[V_2 = V_L + R_1 \dot{L}_L = 4.997 \text{ V}\]

\[I_Z = \frac{V_2}{R_2} = 0.151 \text{ mA}\]

\[I = I_L + I_Z = 0.433 \text{ mA}\]

\[i(t) = 0.433 \text{ mA}\]
3. Determine the complex transfer function \(\bar{T}(s) \) for the circuit shown below. Specify it as a function of the complex frequency, \(s \), and the symbols for the resistors and capacitor and is the form of the ratio of two polynomials in \(s \). Plot the magnitude of the complex transfer function \(\bar{T}(j\omega) \) in decibels as a function of the frequency \(f \) of the source as \(f \) varies from 1 Hz to 1 MHz. The component values are \(R_1 = 300 \, \text{k}\Omega \), \(R_2 = 3 \, \text{k}\Omega \), \(R_3 = 1 \, \text{k}\Omega \), \(R_4 = 2 \, \text{k}\Omega \), and \(C = 1 \, \text{nF} \). Use the numerical values given for the resistors and capacitors. If applicable, determine the pole and zero frequencies as well as the high and low frequency gains.

\[
T(0) = \frac{R_3}{R_1 + R_2 + R_3}
\]

\[
T(\omega) = \frac{R_3}{R_1 || R_4 + R_2 + R_3}
\]

\[
\bar{T}(s) = \frac{1 + 2\pi \gamma_2}{1 + 2\pi \gamma_p} = \frac{R_3}{R_1 + R_2 + R_3} \frac{1 + 2\gamma_p (R_1 + R_4)}{1 + 2\gamma_p}
\]

\[
|\bar{T}(0)|_{dB} = 20 \log_{10} \left| \frac{R_3}{R_1 + R_2 + R_3} \right| = -49.657 \, \text{dB}
\]

\[
|\bar{T}(\omega)|_{dB} = 20 \log_{10} \left| \frac{R_3}{R_1 || R_4 + R_2 + R_3} \right| = -15.544 \, \text{dB}
\]

\[
f_p = \frac{1}{2\pi \gamma_p} = 2.6761 \, \text{kHz}
\]

\[
f_z = \frac{1}{2\pi \gamma_z} = 527.003 \, \text{Hz}
\]
4. Indicate with an F (floating) or G (grounded) whether the following laboratory instruments input or output connectors are floating or grounded with respect to the ac power line ground

F Keysight 34401A Digital Multimeter
G Keysight DSO-X 3012A Oscilloscope
F Keysight 3630A Triple Output dc Power Supply
F Keysight 33522A Function Generator/Arbitrary Waveform Generator
F Fluke/Philips 6303 LCR Meter

The names of the three wires connected to a standard 120 Volt AC outlet are the [__] wire which is covered with [__] colored insulation, the [__] wire which is covered with [__] colored insulation, and the [__] which is covered with [__] colored insulation.

2 each
3 try
Mean 74.96808511
Median 78.5
Standard Deviation 22.48892302
Mode 100
Max 100
Min 0
Number 94