1. What is the current $i(t)$ in the circuit shown below when $t = 7.3 \text{ ms}$? The voltage source is $e(t) = 10 \text{ V}u(t)$ where $u(t)$ is the unit step function. The component values are: $R_1 = 20 \text{ k}\Omega$, $R_2 = 24 \text{ k}\Omega$, $R_3 = 15 \text{ k}\Omega$, and $C = 0.22 \mu\text{F}$.

\[
V_c(t) = E \left[1 - e^{-\frac{t}{\gamma}}\right] u(t)
\]
\[
i_c(t) = E e^{-\frac{t}{\gamma}} u(t)
\]
\[
\gamma = R C = 5.7 \text{ ms}
\]
\[
V_c = E \left[1 - e^{-\frac{t}{\gamma}}\right] = 3.94 \quad i_c = \frac{E}{R} e^{-\frac{t}{\gamma}} = 0.058 \text{ mA}
\]
\[
i_2 = \frac{V_c + R_3 i_c}{R_2} = 0.201 \text{ mA}
\]
\[
i = i_2 + i_c = 0.259 \text{ mA}
\]
\[
i(t) = 0.259 \text{ mA}
\]
2. What is the current $i(t)$ in the circuit shown below when $t = 0.43 \mu s$? The voltage source is $e(t) = 10 V u(t)$, where $u(t)$ is the unit step function. The component values are: $R_1 = 13 k\Omega$, $R_2 = 12 k\Omega$, $R_3 = 6.8 k\Omega$, and $L = 3 mH$.

\[
\begin{align*}
i_L(t) &= I \left[1 - e^{-\frac{t}{\tau}}\right] u(t) \\
v_L(t) &= \frac{I}{G} e^{-\frac{t}{\tau}} u(t) \\
\gamma &= \frac{L}{G} \\
E &= E_0 \frac{R_2}{R_1 + R_2} = 4.8 V \\
R &= R_3 + R_1 || R_2 = 13 k\Omega \\
I &= \frac{E}{R} = 0.368 mA \\
G &= \frac{L}{R} = 76.7 \mu \text{T} \\
R &= R_3 + R_1 || R_2 = 13 k\Omega \\
E &= E_0 \frac{R_2}{R_1 + R_2} = 4.8 V \\
I &= \frac{E}{R} = 0.368 mA \\
\gamma &= \frac{L}{G} = 0.23 \mu s \\
i_L(t) &= I \left[1 - e^{-\frac{t}{\tau}}\right] = 0.311 mA \\
v_L(t) &= \frac{I}{G} e^{-\frac{t}{\tau}} = 0.74 V \\
v_2(t) &= v_L + R_3 i_L = 2.857 V \\
i_Z &= \frac{v_2(t)}{R_2} = 0.238 mA \\
i(t) &= i_L(t) + i_Z = 0.549 mA
\end{align*}
\]

\[i(t) = 0.549 mA\]
3. Determine the complex transfer function $\overline{T}(s)$ for the circuit shown below. Specify it as a function of the complex frequency, s, and the symbols for the resistors and capacitor and a the ratio of two polynomials in s. Plot the magnitude of the complex transfer function $\overline{T}(j\omega)$ in decibels as a function of the frequency f of the source as f varies from 1 Hz to 1 MHz. The component values are $R_1 = 330 \, k\Omega$, $R_2 = 2 \, k\Omega$, $R_3 = 150 \, k\Omega$, and $C = 10 \, nF$. Use the numerical values given for the resistors and capacitors. If applicable, determine the pole and zero frequencies as well as the high and low frequency gains.

$$H = T(10)$$

$$T(10) = \frac{R_3}{R_1 + R_3}$$

$$T(\infty) = \frac{R_2 \| R_3}{R_1 + R_2 \| R_3}$$

$$\therefore s = \frac{1}{\tau_p}$$

$$\overline{T}(s) = \frac{T(\infty)}{1 + \frac{R_3}{R_2 + R_3}} = \frac{1 + \frac{R_2}{R_2 + R_3} \frac{1}{C}}{1 + \frac{R_2}{R_2 + R_3} \frac{1}{C}}$$

$$|\overline{T}(0)|_{dB} = 20 \log_{10} \left| \frac{R_2}{R_1 + R_3} \right| = -10.1 \, dB$$

$$|\overline{T}(\infty)|_{dB} = 20 \log_{10} \left| \frac{R_2 \| R_3}{R_2 \| R_3 + R} \right| = -44.5 \, dB$$

$$f_p = \frac{1}{2\pi \tau_p} = \frac{1}{2\pi \left[\frac{R_2 + R_1 \| R_3 + R}{C} \right]} = 751 \, Hz$$

$$f_z = \frac{1}{2\pi \tau_z} = \frac{1}{2\pi \left[\frac{R_2 C}{R_2 + R_3} \right]} = 7.96 \, Hz$$
4. Indicate with an F (floating) or G (grounded) whether the following laboratory instruments input or output connectors are floating or grounded with respect to the ac power line ground.

- **F** Keysight 34401A Digital Multimeter
- **G** Keysight DSO-X 3012A Oscilloscope 2 each
- **F** Keysight 3630A Triple Output dc Power Supply
- **F** Keysight 33522A Function Generator/Arbitrary Waveform Generator
- **F** Fluke/Philips 6303 LCR Meter

The names of the three wires connected to a standard 120 Volt AC outlet are the [black] wire which is covered with [black] colored insulation, the [white] wire which is covered with [white] colored insulation, and the [green] wire which is covered with [green] colored insulation.
1. What is the current $i(t)$ in the circuit shown below when $t = 7.3\,\text{ms}$? The voltage source is $e(t) = 10\,\text{V}u(t)$ where $u(t)$ is the unit step function. The component values are: $R_1 = 3\,\text{k}\Omega$, $R_2 = 10\,\text{k}\Omega$, $R_3 = 12\,\text{k}\Omega$, and $C = 0.33\,\mu\text{F}$.

\[R = R_2 + R_1/R_3 = 12.4\,\text{k}\Omega \quad E = E_0 \frac{R_3}{R_1 + R_3} = 8\,\text{V} \]

\[v_c = E \left[1 - e^{-\frac{t}{R_C}} \right] = 6.66\,\text{V} \quad i_c = \frac{E}{R} \, e^{-\frac{t}{R}} = 0.108\,\text{mA} \]

\[v_3 = v_c + R_2i_c = 7.74\,\text{V} \]

\[i_3 = \frac{v_3}{R_3} = 0.645\,\text{mA} \]

\[i = i_c + i_3 = 0.753\,\text{mA} \]

\[i(t) = 0.753\,\text{mA} \]
2. What is the current \(i(t) \) in the circuit shown below when \(t = 0.43 \mu s \)? The voltage source is \(e(t) = 18 \ V u(t) \) where \(u(t) \) is the unit step function. The component values are: \(R_1 = 39 \ \Omega \), \(R_2 = 13 \ \Omega \), \(R_3 = 30 \ \Omega \), and \(L = 3 \ \text{mH} \).

\[
\begin{align*}
\frac{\gamma}{G} &= G L = 0.1 \ \mu \Omega \\
R &= \frac{R_2}{R_1 + R_3} = 30 \ \Omega \\
G &= \frac{1}{R} = 33.4 \ \mu \Omega \\
E &= E_0 \frac{R_2}{R_1 + R_3} = 16.1 \ V \\
I &= \frac{E}{R} = 0.537 \ mA \\
i_L &= I \left[1 - e^{-\frac{t}{\gamma}} \right] = 0.53 \ mA \\
V_L &= \frac{I}{G} e^{-\frac{t}{\gamma}} = 0.22 \ V \\
V_3 &= V_L + R_2 i_L = 7.1 \ V \\
V' &= \frac{V_3}{R_3} \\
i &= i_L + V_3 = 0.767 \ mA \\
i(t) &= 0.767 \ mA
\end{align*}
\]
3. Determine the complex transfer function $\tilde{T}(s)$ for the circuit shown below. Specify it as a function of the complex frequency, s, and the symbols for the resistors and capacitor and is the form of the ratio of two polynomials in s. Plot the magnitude of the complex transfer function $\tilde{T}(j\omega)$ in decibels as a function of the frequency f of the source as f varies from 1 Hz to 1 MHz. The component values are $R_1 = 10 \, k\Omega$, $R_2 = 330 \, k\Omega$, $R_3 = 1 \, k\Omega$, and $C = 1 \, nF$. Use the numerical values given for the resistors and capacitors. If applicable, determine the pole and zero frequencies as well as the high and low frequency gains.

\[
\tilde{T}(s) = \frac{R_3}{R_1 + R_2 + R_3} \frac{1 + 2 \frac{R_2 C}{s}}{1 + 2 \frac{R_1 + R_2}{s}}
\]

\[
|\tilde{T}(0)|_{dB} = 20 \log_{10} \left| \frac{R_3}{R_1 + R_2 + R_3} \right| = -50.7 \, dB
\]

\[
|\tilde{T}(\infty)|_{dB} = 20 \log_{10} \left| \frac{R_3}{R_1 + R_2} \right| = -20.8 \, dB
\]

\[
f_p = \frac{1}{2\pi R_1 \omega_p} = \frac{1}{2\pi (R_2 || (R_1 + R_3)) C} = 152 \, Hz
\]

\[
f_z = \frac{1}{2\pi R_1 \omega_z} = \frac{1}{2\pi R_2 C} = 482 \, Hz
\]
4. Indicate with an F (floating) or G (grounded) whether the following laboratory instruments input or output connectors are floating or grounded with respect to the ac power line ground

- F Keysight 34401A Digital Multimeter
- G Keysight DSO-X 3012A Oscilloscope 2 each
- F Keysight 3630A Triple Output dc Power Supply
- F Keysight 33522A Function Generator/Arbitrary Waveform Generator
- F Fluke/Philips 6303 LCR Meter

The names of the three wires connected to a standard 120 Volt AC outlet are the **hot** wire which is covered with **black** colored insulation, the **neutral** wire which is covered with **white** colored insulation, and the **ground** which is covered with **green** colored insulation.
ECE 3043 Lecture Exam 1 September 20, 21 2018

Mean 78.48275862
Median 80
Standard Deviation 13.44658863
Mode 90
Mar 100
Min 43
Number 87