
ECE 3043 Short Notes

A Linear System’s Frequency Response and Plotting it
in Logarithmic Scale

Hossein Taheri

School of Electrical and Computer Engineering

Georgia Institute of Technology

You work with a circuit’s transfer function all the time in this course and
make extensive use of the logarithmic scale: you are asked to Bode-plot a sys-
tem’s frequency response in your homework assignments, lab reports, or maybe
exams using Matlab, Agilent VEE, or even with bare hands, where the hori-
zontal axis reads Frequency (log-scale). Good or bad, you will continue to see
such plots here and there if you end up working as an electrical engineer or ap-
plied physicist, especially in the field of electronics or systems control. In fact,
logarithmic scale will prove helpful to you wherever you are dealing with large
numbers or working with data over a large range. You should hence know well
the steps involved in finding a linear system’s transfer function and converting
it to its frequency response, and should also feel comfortable plotting data vs.
log-scale or reading data off of a chart with either axis (or both!) in log-scale.
The purpose of this short note is to create a better feeling about the concepts
of transfer function, frequency response, and logarithmic scale through an ex-
ample. The example is a very simple one because the focus is intended to be on
the approach for analyzing such a problem in a systematic way.

Let’s consider a simple RC filter: A resistor of resistance R in series with
a capacitor with capacitance C, where the output is the voltage across the
capacitor (Figure 1). The transfer function for this “linear” circuit in the
Laplace domain is

T (s) =
Vout(s)

Vin(s)
=

1

1 +RCs
. (1)

(The reason I emphasize on the linearity of the circuit is that you can have
transfer function only for a linear system or, more carefully put, for a system
only in its linear regime of operation.) The variable s is a complex frequency,
i.e. it has both real and imaginary parts: s = σ + iω, where i =

√
−1. (Math-

ematicians and physicists like to denote the square root of -1 by i, but since
the letter i is already taken up for current in electrical engineering, electrical
engineers have adopted j. Since I hold physicists in high esteem, let me use i.)

To go from the Laplace domain to the Fourier domain, we need not care
about the real part of s and should merely replace it by iω yielding

T (ω) =
Vout(ω)

Vin(ω)
=

1

1 + iωRC
. (2)
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Figure 1: A simple low-pass filter

The transfer function for our simple circuit is now ready for manipulations as a
function of the radian frequency ω in the Fourier domain.

What we have at hand is a fraction in terms of complex values as the de-
nominator has both real and imaginary parts. So, before going any further,
let’s review very quickly what we need to remember about complex numbers at
this point. Every complex number z could be written in, at least, two equiv-
alent forms: in terms of its real and imaginary parts, namely z = x + iy, or
in terms of its amplitude and phase, i.e. z = reiθ. For obvious reasons I will
call the former the real-imaginary component representation and the latter the
magnitude-phase representation of the complex number z. Clearly, the pair x−y
and the pair r − θ of the two representations are related by

x = r cos θ y = r sin θ (3a)

r =
√
x2 + y2 θ = arctan

y

x
, (3b)

where I have exploited the so-called Euler formula eiθ = cos θ + i sin θ.

Our goal here is to find the magnitude-phase representation of the transfer
function of Eqn.(2). Although we can easily go directly to this desired form, let’s
do it step by step, going first from the transfer function to the real-imaginary
component representation and from there to the magnitude-phase one. For that,
multiply both the numerator and the denominator of Eqn.(2) by the complex
conjugate of its denominator :

T (ω) =
1

1 + iωRC
=

1

1 + iωRC
.
1− iωRC
1− iωRC

=
1− iωRC

1 + (ωRC)2

=
1

1 + (ωRC)2
+ i

−ωRC
1 + (ωRC)2

. (4a)

The real and imaginary parts of the transfer function are now known. It is
straightforward then to find the magnitude-phase representation using Eqn.(3b)
as

T (ω) =
Vout(ω)

Vin(ω)
=

1√
1 + (ωRC)2

ei[arctan (−ωRC)]. (4b)
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So the magnitude and phase of the transfer function are

Magnitude :
1√

1 + (ωRC)2
, (6a)

Phase : arctan (−ωRC) = − arctan (ωRC). (6b)

In the last line, I have used the fact that arctan(x) is an odd function of x, for
real x.

Question: How could we find these directly, i.e. without having to find the
real-imaginary component representation?

Answer: Think of Magnitude and Phase as operators. Let’s represent the
magnitude operator by | · |, such that the magnitude of the complex number z
is |z| = r, and represent the phase operator by ∠· , such that the phase of z
is ∠z = θ. How the magnitude operator works is quite simple: the magnitude
of the product of two complex numbers is the product of their magnitudes,
i.e. for two complex numbers z1 and z2, |z1z2| = |z1||z2|. On the other hand,
how the phase operator treats the product of two complex numbers z1 and z2
is similar to a logarithm, i.e. just as log(z1z2) = log(z1) + log(z2), we have
∠z1z2 = ∠z1 + ∠z2. As you may expect, ∠(1/z) = ∠z−1 = −∠z so that
∠(z1/z2) = ∠z1−∠z2. Now let’s apply these operators to our transfer function.

|T (ω)| =
∣∣∣Vout(ω)

Vin(ω)

∣∣∣ =
∣∣∣ 1

1 + iωRC

∣∣∣ =
1

|1 + iωRC|

=
1√

1 + (ωRC)2
(7a)

∠T (ω) = ∠
Vout(ω)

Vin(ω)
= ∠

1

1 + iωRC
= ∠1− ∠(1 + iωRC) = 0− arctan (ωRC)

= − arctan (ωRC) (7b)

These are the exact same results of Eqn.(6), obtained previously through
finding the magnitude-phase representation of our system’s transfer function
(after finding its real-imaginary component representation!). The combination
of the magnitude and the phase response of a system is called its frequency
response. So, we have thus far found exact expressions for the frequency re-
sponse of our simple RC circuit with the input and output as specified in Figure
1. Please note that both the magnitude and the phase response are dimen-
sionless quantities. The angular frequency ω has units of radians per second
and the product RC has dimensions of time and if R is in Ohms and C is in
Farads, would be in seconds. The product ωRC is hence rad/sec× sec = rad,
i.e. merely a number. (Remember that radian is itself a dimensionless quantity
because it is the ratio of two lengths, namely the length of an arc and its radius.)

These expressions could be plotted vs. the frequency in this current form,
without any further manipulation. That would be the frequency response in
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linear scale vs. frequency, again, in linear scale. I suggest that you try doing
that in Matlab for R = 1kΩ and C = 1nF . The problem, you will readily
realize, is that your horizontal axis should be very long in order for your plot
to show a complete view of the magnitude and phase responses. For instance,
if your horizontal axis ω covers values from 104 upto 105, i.e. an interval of
9 × 104rad/sec, you will barely notice any interesting and important feature
on the curve. (In fact, as you will see shortly, a plot that is just good enough
should cover from 104rad/sec to 108rad/sec!) So, we need a way to somehow
fit in our large horizontal axis. Search through different mathematical functions
you know. We want a function that gets a large number as input and returns
a smaller number as output. We want it to give us a larger output for a larger
input, because we do not want it to change the order of the numbers on our
horizontal axis. (It would be bad if your frequency axis gets messed up!) If
you add to these the requirement of simplifying calculations too, then you will
vividly see that logarithm is an ideal choice. Its output is just minuscule com-
pared to the corresponding input, e.g. log10(104) = 4 which is only % 0.04 of
the input. It is also monotonic, i.e. the relationship 105 > 104 for two inputs
is preserved between their logs (log10(105) = 5 > log10(104) = 4). Finally, it
converts multiplication to summation, division to subtraction, and an exponent
to a coefficient, leading to significant simplification of calculations. As for the
base of the logarithm, we will naturally pick 10.

Now let’s rewrite the magnitude response in a weird way. (You will realize
why I am doing this in a minute.) I can write ω as 10log10(ω); remember that
taking the log and exponential are inverse of each other such that ω = 10log10(ω)

is a trivial identity. Let’s pick a name for log10 ω, say x: x = log10 ω. So
ω = 10log10(ω) = 10x. The transfer function of Eqn.(7a), as a function of x,
then, is

|T (x)| =
∣∣∣Vout(x)

Vin(x)

∣∣∣ =
1√

1 + (RC × 10x)2
. (8)

Looks like I made it less friendly. To make things even worse, let’s square both
sides, then take their base-10 log and finally multiply them by 10.

|T (x)|dB = 10× log10

∣∣∣Vout(x)

Vin(x)

∣∣∣2 = 10× log10

1

1 + (RC × 10x)2
. (9)

(This is the familiar procedure for finding the amplitude response in dB, hence
the notation |T (x)|dB . You do 10×log10 |·|2 or, equivalently, 20×log10 |·|, where
the vertical lines represent the absolute value and where you replace the · with
the transfer function expression.) I dragged you along manipulating Eqn.(7a) to
find this: The expression of Eqn.(9) is what Matlab plots as the mag-
nitude response when you use the command bodeplot. If you rewrite
the phase response, i.e. Eqn.(7b), as a function of x, then you will have the
expression for the phase response that bodeplot plots in Matlab. Note that
you do not take the final step of applying 10× log10 | · |2 to your expression when
dealing with the phase response. Both the magnitude and the phase plots are in
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logarithmic scale meaning that their horizontal axis is log10 ω (or our x!). The
vertical axis for the magnitude response is in dB, which is itself log-scale, while
the vertical axis for the phase response is linear, either in degrees or radians.
The Bode plot of the frequency response of our simple circuit is shown in Figure
2. As evident from this plot, it is a low-pass filter.

To make more sense of the expression of Eqn.(9), let’s examine it at two
extremes of low and high frequencies. But how low, or how high? Going back
to Eqn.(7a), if the frequency ω is so low that we can neglect the term (ωRC)2

as compared to the term 1 that is being added to it in the denominator, then
we can simplify our magnitude response:

Low Frequencies : lim
ωRC�1

|T (ω)| = lim
ωRC�1

1√
1 + (ωRC)2

=
1

1
= 1. (10)

Similarly, if the frequency is so high that (ωRC)2 is much larger than the term
1 that is being added to it in the denominator, then we can neglect the 1 and
find a simplified expression:

High Frequencies : lim
ωRC�1

|T (ω)| = lim
ωRC�1

1√
1 + (ωRC)2

=
1

|ωRC|
. (11)

(We can usually safely do this act of neglecting one number added to another,
when the first is at least one order of magnitude smaller than the second. This is
not a general statement, of course, but holds true for most cases in this course.)
Since ω = 10x, the same recipe could readily be followed for the expression used
by Matlab to plot Bode diagrams, i.e. Eqn.(9), leading to

|T (x)|dB, Low Frequency = 10 log10(1) = 0 dB. (12)

So, at low frequencies, the magnitude response will approach 0 dB, i.e. a straight
line of zero slope. As for high frequencies,

|T (x)|dB, High Frequency = 10 log10

1

(RC × 10x)2
= −20 log10 |RC × 10x|

= −20 log10 |RC| − 20 log10 10x

= −20 log10 |RC| − 20x dB. (13a)

The first term in the latter equation is a constant. Using a = −20 log10 |RC| to
rewrite this equation results in

|T (x)|dB, High Frequency = a− 20x dB, (13b)

which has the familiar form y = a + bx of a line with slope b = −20! This is
the famous -20 dB per decade slope you have been hearing all along.
When the frequency increases by a factor 10 (or a decade), x increases by 1
value and the magnitude response decreases by 20 dB.
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Let me summarize what we have done so far: We found the transfer func-
tion in the Laplace and Fourier domains, found the magnitude and phase re-
sponses which are together called the frequency response, found the expression
used in plotting Bode diagrams, and finally found its low- and high-frequency
asymptotes. We noticed that for this first-order linear circuit these asymptotic
approximations are two lines, one with zero slope which shows the response of
the circuit at low-frequencies and the other with -20 dB/decade slope which
approximates its behavior at high-frequencies. To make sure that we did not
get lost amidst the mathematical elaborations, in Figure 3 I have laid on top
of the magnitude response of our circuit, the low-frequency approximation of
Eqn.(12) and the high-frequency approximation of Eqn.(13). You can see that
they do indeed approximate the magnitude response at low and high frequencies.

As a final remark, let me talk a little bit about the question raised earlier
in the discussion leading to Eqn.’s (10) and (11): For the system of Figure 1,
which frequencies are considered high and which frequencies are considered low?
The answer lies in the simplification process we followed. In the denominator
of the amplitude response of Eqn.(7a), we have 1 + (ωRC)2 and the asymptotic
approximation we made was based on the comparison of ωRC with 1: ωRC � 1
for low frequencies and ωRC � 1 for high frequencies. Dividing both sides of
these conditional expressions by RC, they could be expressed equivalently as

Low Frequencies : ω � 1

RC
(14a)

High Frequencies : ω � 1

RC
. (14b)

Let’s denote the fraction on the right-hand side of these conditional expressions
by ωc: ωc = 1

RC . (You will see why I chose the subscript c in a minute.)
This is the frequency which is defined by the elements in our circuit, namely
the resistance of the resistor R and the capacitance of the capacitor C, and is
our reference for judging if a given frequency is low or high enough so we can
use the approximations of Eqn.’s (10) or (11). (Note that it has the correct
unit of frequency.) You can rewrite all the previous expressions in terms of ωc.
For instance, the transfer function in Eqn.(1) could be rewritten using ωc as

T (s) = Vout(s)
Vin(s)

= 1
1+s/ωc

. Using Eqn.(7a), you see that at this frequency

|T (ω = ωc)|2 =
1

1 + (ω/ωc)2
|ω=ωc =

1

1 + 1
=

1

2
. (15)

We saw that the maximum of the magnitude response is 1 (see Eqn.(10) or
Figure 2). So, ωc is the frequency at which the square of the magnitude response
is half its maximum value. Since beyond this point the square of the magnitude
response, which is a measure of the power at each frequency, drops to less than
a half of its maximum, this frequency is called the cut-off frequency, hence
the subscript c. Since 10 × log10

1
2 = −3dB, this frequency is also called the 3

dB cut-off frequency.
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