
ECE 3043 Spring 2020 Homework Problem Set No. 4 for Experiment No. 4

Due Week of February 10

- For the circuit shown below, use National Instruments SPICE (Multisim) to plot the Bode plot of the complex transfer function V_o/V_i, as the frequency of the voltage source, v_i(t), varies from 0.1f_o to 10f_o where f_o is the resonant frequency of the circuit. Compare the simulation results with the theoretical results for f_o, Q, and Δf. Assume that the voltage source v_i(t) is a sine wave with an rms value of 1 V. The component values are R₁ = 20 kΩ, R₂ = 20 kΩ, L = 3 mH, and C = 1 nF. Use either Mathcad and Matlab to plot the magnitude and phase of the voltage v_o(t); assume that the phase of the source v_i(t) is zero with the positive side up. (Note that since the input is unity this is equivalent to finding the Bode plot.)
- 2. For the circuit shown below plot $v_o(t)$ versus t using either MathCad or Matlab. The range of t for the plot is from 0 to $4T_d$ where $T_d = 1/f_d$, $f_d = f_o \sqrt{1-\zeta^2}$, $\zeta = (G/2)\sqrt{L/C}$ and G = 1/R where R is the Norton resistance seen by the parallel combination of L and C.. The input is $v_i(t) = E_o u(t)$ where $E_o = 10$ V and u(t)is the unit step function. Compare the theoretical and simulation results for the driven frequency, f_d , and the attenuation factor of the envelope, α , (use the $i_c(t)$ plot for this with Multisim). The component values are the same as for Problem 1.

