1. From the output characteristic for the N Channel Enhancement Mode MOSFET obtained with the Keysight Curve Tracer used in lab, determine K_P, V_{TO}, and λ.

2. Design a common source single stage MOSFET amplifier circuit to have a small-signal gain with a linear magnitude of 10. Bias the circuit so that the dc drain current is $1\, \text{mA}$. The small-signal input impedance is specified to be $100\, \text{k}\Omega$ and the small signal output impedance is $10\, \text{k}\Omega$. The load resistor is $43\, \text{k}\Omega$. The dc power supply voltages are $V^+ = +15\, \text{V}$ and $V^- = -15\, \text{V}$. Use the value of K, λ, and V_{TO} measured from the curve tracer data in lab. The other parameters of the transistor are: $C_{GDO} = 2.5\, \text{nF} / \text{m}$ and $C_{GSO} = 2.5\, \text{nF} / \text{m}$. Pick $C_1 = C_2 = 0.22\, \mu\text{F}$, and $C_3 = 10\, \mu\text{F}$.

Verify the design with a SPICE analysis. Use a DC analysis to determine the bias. Use an AC analysis to plot the gain versus the frequency. Choose the lower frequency as $1\, \text{Hz}$ and the upper frequency $10\, \text{GHz}$. Mark the midband gain and the $-3\, \text{dB}$ frequencies. The SPICE parameters are K_P ($2K$), V_{TO} (V_{TO}), λ (λ), C_{GDO} (C_{GDO}), and C_{GSO} (C_{GSO}). If the version of SPICE used requires the width (W) and length (L) of the channel use $10\, \mu\text{m}$ for each. Perform a transient analysis to determine the upper and lower clipping levels.