1. Design a common source single stage MOSFET amplifier circuit to have a small-signal gain with a magnitude of 3. Bias the circuit so that the dc drain current is 1 mA. The small-signal input impedance is specified to be 50 kΩ and the small signal output impedance is 4.7 kΩ. The load resistor is 10 kΩ. The dc power supply voltages are $V^+ = +15$ V and $V^- = -15$ V. The parameters of the transistor are: K, V_{TO}, $C_{GDO} = 2.5$ nF/m, $C_{GSO} = 2.5$ nF/m, and $\lambda = 0.014 V^{-1}$. Pick $C_1 = C_2 = 0.22 \mu F$, and $C_3 = 10 \mu F$. For K and V_{TO} use the values measured in lab from the data taken from the Keysight curve tracer.

Verify the design with both a SPICE analysis and experimental measurements. For the SPICE analysis use a DC analysis to determine the bias. Use an AC analysis to plot the gain versus the frequency. Choose the lower frequency as 1 Hz and the upper frequency 10 GHz. Mark the midband gain and the -3 dB frequencies. The SPICE parameters are $K^* (2K)$, V_{TO} (V_{TO}), $LAMBDA$ (λ), $CGDO$ (C_{GDO}), and $CGSO$ (C_{GSO}). If the version of SPICE used requires the width (W) and length (L) of the channel use 10 µm for each. Perform a transient analysis to determine the upper and lower clipping levels.