First Order Low Pass Active Filter Specifications

$$f_{crit} := 10.28kHz$$
 $j := \sqrt{-1}$

$$j := \sqrt{-1}$$

Non Inverting

DC Gain 20dB

Frequency 3dB

fcrit

$$K := 10^{\frac{20}{20}} = 10$$
 Pick $C := 0.1 \mu F$

Pick

$$R_{\mathbf{R}} = 3k\Omega$$

$$R_B = 3k\Omega$$
 $R_A = 27k\Omega$

27kΩ

$$T(s) = K \cdot \frac{1}{1 + s\tau}$$
 $\tau = RC$

 $R := \frac{1}{2 \cdot \pi \cdot f_3 \cdot C} = 154.82\Omega$

$$K = T(0)$$

 $f_3 := f_{crit}$

$$g = \frac{1}{2\pi \tau}$$

$$K = 1 + \frac{R_A}{R_B}$$

$$T(f) := K \cdot \frac{1}{1 + j \cdot \frac{f}{f_3}}$$

$$i := \sqrt{-1}$$

 $j := \sqrt{-1} \qquad \qquad f_{crit} := 10.28 kHz$

$$T(s) = K \cdot \frac{1 + s\tau_z}{1 + s\tau_p}$$

$$T(0) = K = 1 + \frac{R_{F1} + R_{F2}}{R}$$

$$T(\infty) = 1 + \frac{R_{F1}}{R}$$

$$\tau_p = R_{F2}C$$

$$\tau_{z} = \left[R_{F2} \| \left(R_{F1} + R\right)\right] \cdot C$$

$$f_{p} = \frac{1}{2\pi \cdot \tau_{p}}$$

$$f_z = \frac{1}{2\pi \tau_z}$$

Specification

$$f_p := f_{crit}$$

DC gain

20dB

∞ frequency gain

6dB

 $C := 0.015 \mu F$ Pick

$$\tau_p \coloneqq \frac{1}{2 \cdot \pi \cdot f_p}$$

$$\tau_{p} := \frac{1}{2 \cdot \pi \cdot f_{p}} \qquad \qquad R_{F2} := \frac{\tau_{p}}{C} = 1.032 \text{k}\Omega \qquad \qquad K := 10^{\frac{20}{20}} = 10 \qquad \qquad K_{H} := 10^{\frac{6}{20}} = 1.995$$

$$K := 10^{\frac{20}{20}} = 10^{\frac{1}{20}}$$

$$K_{\text{H}} := 10^{\frac{0}{20}} = 1.995$$

$$R := \frac{R_{F2}}{K - K_H} = 128.94\Omega \qquad \qquad R_{F1} := R \cdot \left(K_H - 1\right) = 128.329\Omega \qquad \qquad \tau_Z := \frac{K_H}{K} \cdot \tau_p \qquad f_Z := \frac{1}{2 \cdot \pi \cdot \tau_z} = \frac{1}{2 \cdot \pi \cdot$$

$$R_{F1} := R \cdot (K_H - 1) = 128.329\Omega$$

$$\tau_Z \! := \frac{K_H}{K} \! \cdot \! \tau_p$$

$$f_{Z} := \frac{1}{2 \cdot \pi \cdot \tau_{Z}}$$

$$T(f) := K \cdot \frac{1 + j \cdot \frac{f}{f_z}}{1 + j \cdot \frac{f}{f_z}}$$

$$f_z = 51.522 \text{ kHz}$$

$$i := \sqrt{-1}$$

 $j := \sqrt{-1}$ $f_{crit} := 10.28kHz$

$$T(s) = K \cdot \frac{1 + s\tau_z}{1 + s\tau_p}$$

$$T(0) = K = \frac{-R_F}{R_1 + R_2}$$

$$T(\infty) = \frac{-R_F}{R_1} \qquad \tau_z = R_2 C$$

$$\tau_p = (R_2 || R_1) \cdot C$$

$$f_p = \frac{1}{2\pi \cdot \tau_p}$$
 $f_z = \frac{1}{2\pi \tau_z}$

$$f_z = \frac{1}{2\pi \tau_z}$$

Specification

$$f_z := f_{crit}$$

DC gain

∞ frequency gain

20dB

Pick $C := 0.015 \mu F$ Solution

$$\tau_z := \frac{1}{2 \cdot \pi \cdot f_z}$$

$$R_2 := \frac{\tau_z}{C} = 1.032 \,\mathrm{k}\Omega$$

$$\tau_z \coloneqq \frac{1}{2 \cdot \pi \cdot f_z} \qquad \qquad R_2 \coloneqq \frac{\tau_z}{C} = 1.032 \, \text{k} \Omega \qquad \qquad K \coloneqq -(10) \frac{6}{20} = -1.995 \qquad \qquad K_H \coloneqq -10^{\frac{20}{20}} = -10$$

$$K_{\text{H}} := -10^{\frac{20}{20}} = -10$$

$$R_F \coloneqq \frac{R_2}{\frac{1}{K_{tr}} - \frac{1}{K}} = 2.573 \, \text{k}\Omega \qquad \qquad R_1 \coloneqq \frac{-R_F}{K_H} = 257.27\Omega \qquad \qquad \tau_p \coloneqq \frac{K}{K_H} \cdot \tau_z \qquad \qquad f_p \coloneqq \frac{1}{2 \cdot \pi \cdot \tau_p}$$

$$R_1 := \frac{-R_F}{K_H} = 257.27\Omega$$

$$\tau_p := \frac{K}{K_{\mathbf{H}}} \cdot \tau_z$$

$$f_p := \frac{1}{2 \cdot \pi \cdot \tau_p}$$

$$K_{IJ}$$
 K

$$1 + j \cdot \frac{f}{f_{Z}}$$

$$T(f) := K \cdot \frac{f}{1 + j \cdot \frac{f}{f_{D}}}$$
 $f_{D} = 51.522 \text{ kHz}$

$$j := \sqrt{-1}$$

$$T(s) = K \cdot \frac{1 - s\tau}{1 + s\tau}$$

K = 1 $\tau = RC$

Frequency at which phase shift is - 90 degrees

$$f_0 = \frac{1}{2\pi\tau}$$

Specification

$$f_{crit} := 10.28 kHz$$

$$f_o := f_{crit}$$

Pick

$$C := 0.015 \mu F$$

K := 1

$$R := \frac{1}{2 \cdot \pi \cdot C \cdot f_0} = 1.032 \,k\Omega$$

$$T(f) := K \cdot \frac{1 - j \cdot \frac{f}{f_0}}{1 + j \cdot \frac{f}{f_0}}$$

Georgia Institute of Technology

School of Electrical and Computer Engineering

ECE 3043	Electrical and Electronic Circuits Laboratory		its Laboratory	Verification Sheet	
NAME:	SECTION:				
AD LOGIN:					
	Experim	ent 7: First Order Act	ive Filters		
Procedure	Time Completed	Date Completed	Verification (Must demonstrate circuit)	Points Possible	Points Received
1. Low Pass				20	
2. High Pass				20	
3. High Pass Shelving				20	
4. Low Pass Shelving				20	
5. All-Pass				20	
If you were born on or before born after June 30, your confrequency is 3.03 kHz. Expanding the following $f_{\rm crit}$	ritical frequency is (Mo 2: If you were born on	onth.Day/2) kHz. Ex 1: I	f you were born on Mar	ch 3, your crit	•
To be permitted to compleduring your scheduled lab your lab instructor, Dr. Breand receive full credit on to 50% penalty.	period or spend your ewer, or Dr. Robinson	entire scheduled lab se permits you to attend t	ession attempting to do s the open lab hours to co	so. A signatur mplete the ex	e below by kperiment
SIGNATURE: DATE:					

ECE 3043 Check-off Requirements for Experiment 7

Make sure you have made all required measurements before requesting a check-off. For all check-offs, you must demonstrate the circuit or measurement to a lab instructor. All screen captures must have a time/date stamp.

- 1 & 2. Low Pass and High Pass Filters
 - ✓ Bode magnitude plot
 - ✓ Table showing measured pass band gain and -3dB frequencies compared to design values
- 3 & 4. Low and High Pass Shelving Filters
 - ✓ Bode magnitude plot
 - ✓ Table showing measured low frequency gain, high frequency gain, and gain at f_{crit} compared to design values
- 5. All Pass Filter
 - ✓ Bode Phase Plot
 - ✓ Measure frequency where phase shift is 90 degrees. Compare to f_{crit}.