$$i := \sqrt{-1}$$

$$f_{crit} := 10.28 kHz$$

$$f_3 := f_{crit}$$

Vo
$$T(s) = \frac{V_o}{V_i} = K \cdot \frac{1}{\left(\frac{s}{\omega_o}\right)^2 + \frac{1}{Q} \cdot \frac{s}{\omega_o} + 1}$$

$$K = 1 + \frac{R_4}{R_3}$$

K = dc gain

$$Q = \frac{\sqrt{R_1 \cdot R_2 \cdot C_1 \cdot C_2}}{(1 - K) \cdot R_1 \cdot C_1 + (R_1 + R_2) \cdot C_2} \qquad \omega_0 = 2\pi f_0 = \frac{1}{\sqrt{R_1 \cdot R_2 \cdot C_1 \cdot C_2}}$$

$$Q := \frac{1}{\sqrt{2}}$$

 $\mbox{Specifications} \qquad \mbox{$Q \coloneqq \frac{1}{\sqrt{2}}$} \qquad \mbox{Butterworth Filter for which} \qquad \qquad f_o \coloneqq f_3$

$$f_0 := f_3$$

$$K:=1$$
 $R_4:=0$ short $R_3:=\infty$ open $\omega_0:=2\cdot\pi\cdot f_0$

$$R_3 := \infty$$

$$v_0 := 2 \cdot \pi \cdot f_0$$

$$T(f) := K \cdot \frac{1}{\left(j \cdot \frac{f}{f_0}\right)^2 + \frac{1}{Q} \cdot j \cdot \frac{f}{f_0} + 1}$$

Special Case 2 Pick $C_1 := 0.015 \mu F$

 $C_2 := 1.5 nF$

$$R_1 := \frac{1}{2 \cdot Q \cdot \omega_0 \cdot C_2} \cdot \left(1 + \sqrt{1 - 4 \cdot Q^2 \cdot \frac{C_2}{C_1}} \right) = 13.826 \text{k}\Omega \quad R_2 := \frac{1}{2 \cdot Q \cdot \omega_0 \cdot C_2} \cdot \left(1 - \sqrt{1 - 4 \cdot Q^2 \cdot \frac{C_2}{C_1}} \right) = 0.771 \cdot \text{k}\Omega$$

Generalized Biquadratic Filter
$$j := \sqrt{-1}$$
 page 156 lab manual

$$j := \sqrt{-1}$$

$$f_{crit} := 10.28kHz$$

$$f_o = \frac{1}{2\pi RC}$$
 $f_o := f_{crit}$

$$f_0 := f_{crit}$$

 $T(s) = \frac{(2\alpha - \gamma) \cdot \left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q} \cdot \frac{s}{\omega_0} \cdot (2 \cdot \beta - \gamma) + \gamma}{\left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q} \cdot \frac{s}{\omega_0} + 1}$

Specification 1 Bandpass

$$O := 5$$

$$\alpha = 0$$
 $\gamma = 0$ $\beta = \frac{1}{2}$

$$\beta = \frac{1}{2}$$

$$T(s) = K \cdot \frac{\frac{1}{Q} \cdot \frac{s}{\omega_0}}{\left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q} \cdot \frac{s}{\omega_0} + 1}$$

$$T(f) := K \cdot \frac{j \cdot \frac{f}{f_0} \cdot \frac{1}{Q}}{\left(j \cdot \frac{f}{f_0}\right)^2 + \frac{1}{Q} \cdot j \cdot \frac{f}{f_0} + 1}$$

Specification 2 Second Order Notch Filter DC and High Freq Gain 1 Q of 2

$$\alpha = \gamma = 1 \qquad \qquad \beta = \frac{1}{2} \qquad \qquad Q := 2$$

$$T(s) = K \cdot \frac{\left(\frac{s}{\omega_o}\right)^2 + 1}{\left(\frac{s}{\omega_o}\right)^2 + \frac{1}{Q} \cdot \frac{s}{\omega_o} + 1}$$

$$T(f) := K \cdot \frac{\left(j \cdot \frac{f}{f_o}\right)^2 + 1}{\left(j \cdot \frac{f}{f_o}\right)^2 + \frac{1}{Q} \cdot j \cdot \frac{f}{f_o} + 1}$$

Specification 3 Second Order All Pass

$$\alpha = 1$$
 $\beta = 0$ $\gamma = 1$ $K := 1$ $Q := 5$

$$T(s) = K \cdot \frac{\left(\frac{s}{\omega_0}\right)^2 - \frac{1}{Q} \cdot \frac{s}{\omega_0} + 1}{\left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q} \cdot \frac{s}{\omega_0} + 1}$$

$$T(f) := K \cdot \frac{\left(j \cdot \frac{f}{f_0}\right)^2 - \frac{1}{Q} \cdot j \cdot \frac{f}{f_0} + 1}{\left(j \cdot \frac{f}{f_0}\right)^2 + \frac{1}{Q} \cdot j \cdot \frac{f}{f_0} + 1}$$

Georgia Institute of Technology

School of Electrical and Computer Engineering

ECE 3043

Electrical and Electronic Circuits Laboratory

Verification Sheet

NAME:			SECTION:		
AD LOGIN:					
	Experime	nt 8: Second Order A	ctive Filters		
Procedure	Time Completed	Date Completed	Verification (Must demonstrate circuit)	Points Possible	Points Received
1. Low Pass				20	
2. High Pass				20	
3. Bandpass				20	
4. Notch				20	
5. All-Pass				20	
born after June 30, you	before June 30, your critic or critical frequency is (Mc Ex 2: If you were born on l uency below:	onth.Day/2) kHz. Ex 1: I	f you were born on Marc	ch 3, your crit	
during your scheduled your lab instructor, Dr.	nplete the experiment dur lab period or spend your of Brewer, or Dr. Robinson p on the report. Without thi	entire scheduled lab se permits you to attend t	ession attempting to do s the open lab hours to co	so. A signatur mplete the ex	e below by xperiment
SIGNATURE:		DATE:			

ECE 3043 Check-off Requirements for Experiment 8

Make sure you have made all required measurements before requesting a check-off. For all check-offs, you must demonstrate the circuit or measurement to a lab instructor. All screen captures must have a time/date stamp.

- 1 & 2. Low Pass and High Pass Filters
 - ✓ Bode magnitude plot
 - ✓ Table showing measured pass band gain and -3dB frequencies compared to design values
- 3 & 4. Bandpass and Notch Filters
 - ✓ Bode magnitude plot
 - ✓ Table showing measured center frequency and half power bandwidth
- 5. All Pass Filter
 - ✓ Bode Phase Plot
 - ✓ Measure frequency where phase shift is 180 degrees. Compare to f_{crit}.